
September 13 , 2013

511 Traffic Program

Enhanced Data Fusion System (EDFS)
System Architecture and Design

Task Order 6.23

Version 1.8

Prepared by:
Leidos

1000 Broadway, Suite 675, Oakland, CA 94607

 Prepared for:
 Metropolitan Transportation Commission

101 8th Street, Oakland, CA94607

2

Revision History

Date Author Notes Reviewer Version

01/15/2013 Bimesh Giri First Version for MTC
review

 1.0

02/21/2013 Bimesh Giri Updates made based on

discussion with Janet,

added designs for User,

Audit, Log and Utility

Modules

David Balmer 1.1

03/04/2013 David Balmer Added Configuration

Module and updated Log

and Audit Modules

Bimesh Giri 1.2

03/11/2013 David Balmer Updated Configuration

Module to remove

separate configuration

message queue

requirement

Bimesh Giri 1.3

04/01/2013 David Balmer Expanded Configuration

section.

Bimesh Giri 1.4

04/19/2013 David Balmer

Thet Zaw

Bimesh Giri

Added Role and User

Privileges

Added UML sequence

diagram for user module

Added Data flow diagram

showing various queues

used by the system

Bimesh Giri 1.5

3

05/09/2013 David Balmer Replaced class diagrams

for data elements with

detailed layouts including

field descriptions and

lookup tables.

Updated to match current

development.

 1.6

05/24/2013 David Balmer

Bimesh Giri

Thet Zaw

Updated document as

configuration module has

to be changed due to

issues identified during

unit testing

Added details on data

archiving, alarm

processor, publisher and

reporting

Bimesh Giri 1.7

09/13/2013 David Balmer

Bimesh Giri

Thet Zaw

Updated various

modules per requirement

changes

Added section for service

failover (active/passive)

scenarios.

Expanded Alarm module

and reports sections

Bimesh Giri 1.8

4

Contents
1 Acronyms Used ... 7

2 Introduction .. 8

2.1 Purpose ... 8

3 Intended Audience .. 8

4 Architecture Principles & Standards ... 8

5 Key Concepts ... 9

5.1 EDFS Data Flow ... 9

5.2 Event workflow ... 11

6 System Architecture and Data flow .. 16

6.1 Configuration Module (CM) .. 16

6.2 Audit Module (AM) ... 16

6.3 Alarm Module (ALM) ... 16

6.4 Logging Module (LM) .. 16

6.5 Publishing Module (PM) .. 16

6.6 Event Module (EM) ... 16

6.7 Workflow Module (WM) ... 16

6.8 User Module (USM) .. 17

6.9 Utility Module (UM) .. 17

6.10 Database Module (DM) ... 17

6.11 Web Component ... 17

6.12 Data Interface (DI) ... 17

6.13 Data Processor .. 17

6.14 Event Orchestration Engine (EOE) .. 17

6.15 Log Processor .. 18

6.16 Audit Processor ... 18

6.17 Alarm Processor .. 18

6.18 Archive Processor .. 18

6.19 Publishing Processor ... 18

6.20 Data Elements ... 21

6.20.1 Event Information ... 21

6.20.1 Event Publishing .. 27

5

6.20.2 User Information ... 28

6.20.3 User and Role Privileges .. 30

6.20.4 Workflow ... 32

6.20.5 Alarms ... 36

6.20.6 Auditing ... 38

6.20.7 Logging .. 39

6.20.8 Configuration .. 40

6.21 Database Layer .. 43

6.21.1 EDFS Database .. 43

6.21 EDFS Modules ... 45

6.21.1 User Module.. 45

6.21.2 Utility Module ... 51

6.21.3 Log Module ... 52

6.21.4 Audit Module .. 53

6.21.5 Alarm Module ... 54

6.21.6 Configuration Module ... 56

6.21.7 Publishing Module .. 60

6.22 Reporting... 64

6.22.1 Event Report ... 64

6.22.2 Event Audit Report .. 64

6.22.3 Event Activities Reports (per time period) .. 64

6.22.4 User Performance Measures Reports (per time period) .. 65

6.22.5 Current Performance and Activities Reports (at current date/time) 66

6.23 Data Archiving ... 66

6.23.1 Example of archive component process ... 67

7 Technology Selection .. 67

7.1.1 Software and hardware requirements ... 67

7.1.2 Key criteria .. 68

8 Windows Services ... 71

8.1 Service Installation .. 72

8.1.1 Create the service instances ... 72

8.1.2 Delete the service instances ... 72

6

8.2 Service Monitoring .. 73

8.2.1 tblServiceActivationHistory ... 73

8.2.2 tblServiceHeartbeats ... 73

8.3 Service Testing .. 74

7

1 Acronyms Used

API Application Programming Interface

AWS Amazon Web Services

CMS Content Management System

COT Congestion Override Tool

CSV Comma Separated Values

DAL Data Access Layer

DCOL Data Collection Subsystem

EC2 Elastic Compute Cloud

EDFS Enhanced Data Fusion system

GPS Global Positioning System

HTTP Hypertext Transfer Protocol

IVR Interactive Voice Response

JMS Java Message Service

MLDB Master Link Database

MSMQ Microsoft messaging queue

NoSQL Not Only SQL

OOD Object-Oriented Design

OOP Object-Oriented Programming

RDS Relational Database Service

S3 Simple Storage Service

SES Simple Email Service

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SQL Structured Query Language

SQS Simple Queue Service

TOMS TravInfo Open Messaging Service

TTL Time To Live

URL Uniform Resource Locator

XML Extensible Markup Language

ZIP Compressed data format

http://encyclopedia.thefreedictionary.com/api
http://encyclopedia.thefreedictionary.com/Amazon+Web+Services
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Data_access_layer
https://aws.amazon.com/ec2/
http://encyclopedia.thefreedictionary.com/gps
http://www.thefreedictionary.com/Hypertext+Transfer+Protocol
https://en.wikipedia.org/wiki/Interactive_voice_response
http://encyclopedia2.thefreedictionary.com/Java+Message+Service
http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/Object-oriented_design
http://en.wikipedia.org/wiki/Object-oriented_programming
https://aws.amazon.com/rds/
https://aws.amazon.com/s3/
https://aws.amazon.com/ses/
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://encyclopedia.thefreedictionary.com/snmp
https://en.wikipedia.org/wiki/SQL
http://encyclopedia.thefreedictionary.com/Amazon+Simple+Queue+Service
https://en.wikipedia.org/wiki/Time_to_live
https://en.wikipedia.org/wiki/Uniform_resource_locator
http://encyclopedia2.thefreedictionary.com/Extensible+Markup+Language
https://en.wikipedia.org/wiki/Zip_(file_format)

8

2 Introduction

2.1 Purpose
This document provides an overview of the system architecture and design of the new EDFS, a web

based application that will allow TIC operators to manage incidents/events data within 511. For detailed

list of system functionalities, please refer to the requirement specification document. This document

describes the data flow and modules that will help construct the new EDFS.

3 Intended Audience
This document describes the new EDFS architecture and design including process flows, modules and

components, classes and interfaces between them, data storage and messaging. The intended audience

of this document is software developers and engineers, and system administrators who will be involved

in the system development and maintenance. This document assumes that reader has knowledge of

Object-Oriented Design (OOD), Object-Oriented Programming (OOP), distributed systems, system and

software architectural and design patterns, principles of relational and NoSQL databases, SQL

(Structured Query Language), XML (Extensible Markup Language), C# and the Java programming

languages, XML, web development, Microsoft .NET framework, MSMQ (Microsoft messaging Queues),

and Amazon Web Services (AWS). The terms event and incident have been used interchangeably in this

document. Similarly terms such as state, stage and situation refer to same entity called “state” and

represent the state of an event.

4 Architecture Principles & Standards
The following architectural principles and standards should guide the design and development of the

new EDFS:

Architecture Principles

 Application should have an open architecture to allow easy future extension.

 Application modules should be loosely coupled to allow possible future replacement with other
modules.

 Application should support industry standard technologies and best practices.

 Application should be able to reside on a standard Windows Server platform and should not
require any non-standard hardware.

 The application should leverage the latest software releases and other technical infrastructure
to capitalize on the benefits from emerging industry practices.

 Application architecture should enable business continuity and should be available 24 hours a
day, 7 days a week.

 It should be ensured that any failure attributed to the environment or network has minimal
impact on application access and the execution of related jobs.

 Recoverability, redundancy and maintainability should be addressed at the time of design.

 Application should be easy to use and maintain.

9

5 Key Concepts
This section explains key concepts of new EDFS which are useful in understanding the overall system

architecture.

5.1 EDFS Data Flow
Event data within EDFS can originate from multiple data sources such as CHP CAD, LCS and EDFS users.

To receive data, EDFS exposes an interface to each of these data sources e.g. the CHPDI interface

receives data from CHP CAD. Once data is received and processed by the data interface, it will then pass

through a set of data processors or enrichers that will add additional information to help construct an

Event message that can be injected into EDFS for further processing. Each Data interface can have

multiple data processors that it will use to enrich the raw data. These data processors will be available

across multiple data interfaces and each data interface can have a configurable data processor workflow

that it can enrich its data through.

After data has been enriched, the data interface will then submit the event to the event orchestration

engine (EOE) The EOE is the heart of EDFS, and where event will go through it’s lifecycle following a

configured workflow. The EOE monitors every event in the EDFS that is not in Archived state. Following

the workflow, EOE will:

 Transition event states based on defined actions within a workflow.

 Create audit trails for deriving performance metrics.

 Trigger data publishing to external systems such as JMS, API.

 Generate alarms based on certain conditions which then get displayed or sent out to users.

EDFS will also include an Audit and Log component to collect audit and log information.

10

The EDFS web interface will provide all user interfaces required to manage event, users, workflow and

reports. The below diagram depicts this system data flow at a very high conceptual level.

Diagram 1: ESFS Conceptual Architecture

11

5.2 Event workflow
The primary function performed by EDFS is to manage event workflow, configured by system operators.

Events in EDFS will go through a series of states/stages from the time they are created to the time they

are archived. States typically represent the “situation” of an event during its lifecycle. The lifecycle of an

event will be configurable, based on its source. Each state has set of activities and an event transitions

from state to state as a result of execution of one such activity. State transition activity is typically

executed by a user; however state transitions can occur autonomously if configured likewise. Some

activities just update the current situation of a state without resulting in state transition.

Each state has four activities that are executed as a result of actions by users/system or by the state

itself. StateInitialization and StateFinalization activities are executed by virtue of being in a particular

state; whereas ChangeState and UpdateState activities are triggered by users or the system.

 StateInitialization activity - If this optional activity is defined, it is the first activity the

workflow executes when it enters a state. This activity will typically include creating audit

logs such as recording the date and time when an event entered this state.

 ChangeState activity - This activity will result in state transition. Each state will have a

configurable set of other states that it can transition to and users who can initiate such

transitions via actions e.g. an incident reported via twitter feed can transition from New

state to Published state via the Publish action performed by TIC Supervisors only.

 UpdateState activity - This activity will update the current situation of the state without

resulting in state transitions. Audit logs and notifications can be generated based on

certain conditions when an update occurs.

 StateFinalization activity, if this optional activity is defined, it is the last activity the

workflow executes as it leaves a state. This activity will typically include creating audit

logs such as recording the date and time when an event exited this state. These audit logs

can be later used to derive performance metrics e.g. the difference between time logged

at StateFinalization and StateInitialization will tell us how long an event stayed in a

particular state.

Below are the different states of an event:

 New – This represents a situation where an event is automatically created from data

received from external system such as CHP CAD, or if an event is entered using the EDFS

Web interface. Workflow can be configured such that events can automatically transition

to the next state e.g. an event can automatically transition from New to Published state

based on the start time of the event. Similarly configuration can be defined such that

specific users will be required to perform the “Publish” action for a transition to occur

and alerts are sent out to users responsible to take actions. A workflow state cannot have

both automatic transitions as well as action driven transitions defined at the same time.

12

 Published – This represents a situation where an event has been published by operator or

was created from a trusted system which doesn’t require any action from an operator.

 Closed – This represents a situation where an event is has been closed.

 Archived – This represents a situation where an event has been archived.

 Discarded – This represents a situation where an event has been discarded.

EDFS provides set of actions that can be performed on an event in order to change its state or

situation. These actions are executed under the ChangeState or UpdateState activity of a state.

Listed below are the actions available at each state. Every event type, based on its source will

require workflows to be configured using these states and actions. Each action will have list of

associated actors (users) who can perform them.

Actions available during “New” state are:

 Publish – This action involves changing the state of the event to “Published” and can be

performed either by a user or system. A Publish action configured to be performed by a

system will result in automatic transitions.

 Update - This action involves updating attributes of an event and can be performed either

by a user or system. This action will not result in state change.

 Discard – This action involves discarding an event by a user and will result in change of

state to “Discarded”.

Actions that can be performed on an event during “Published” state are:

 Update - This action involves updating attributes of an event. Depending on the type of

user performing this action, will either result in republishing the event with updates or

creating a change request requiring a review. The User assigned to approve or apply

these change requests will be configurable and alerts will be sent out to all those users

whenever a change request is submitted. This action will not result in state change.

 Close – This action involves closing an event and will result in change of state to “Closed”.

Events that were published to external systems will be republished as closed.

 Expire – This is an internal action that is executed when a scheduled event expires and

will result in change of state to “Closed”.

Actions that can be performed on an event during “Discard” state are:

 Update - This action involves updating attributes of an event. This action will not result in

state change.

13

 ReOpen – This action involves reopening an event by a user. ReOpen will result in

transitioning to “Published” state.

 Archive – This action involves archiving an event and will result in change of state to

“Archived”.

Actions that can be performed on an event during “Closed” state are:

 Update - This action involves updating attributes of an event. This action will not result in

state change.

 Archive – This action involves archiving an event and will result in change of state to

“Archived”.

 ReOpen – This action involves reopening an event by a user. ReOpen will result in

transitioning to “Published” state.

14

Below is a sample data flow for a new Event coming into EDFS from an external data source such as

CHPCAD.

Diagram 2: Sample EDFS Workflow (New Event)

15

Below is a sample data flow for Event updates coming into EDFS from an external data source or the

update being performed by an operator using the EDFS web interface.

Diagram 3: Sample EDFS Workflow (Update Event)

16

6 System Architecture and Data flow
EDFS consists of multiple modules to minimize dependencies between subsystems, and also to

introduce layers of abstraction. These modules are classified based on the type of functionality they

perform and can be easily modified as needed without affecting other parts and subsystems. Since each

module is independent of the other, updates or changes can be carried out without affecting the system

as a whole. This allows for better maintainability and extensibility. The separation of these modules also

allows for scalability e.g. having the web module not tightly integrated with the event orchestration

module will allow the website to be easily scalable if needed.

At high level, EDFS comprises of ten core modules that are listed below:

6.1 Configuration Module (CM)
Configuration module provides necessary configuration parameters that are required by other modules

in EDFS. The configuration module will provide methods to read and update the configuration store.

CM is also responsible for notifying modules when configuration has been updated by system admins. A

module will then invalidate its current set of configuration and reload the new set.

6.2 Audit Module (AM)
 Audit module provides methods that can be used to submit audit trails to a database. This will also

provide for methods that will be used by the reporting interface to build and display various audit

reports.

6.3 Alarm Module (ALM)
Alarm module provides methods that can be used create and update alarms in a database. This will also

provide for methods that will be used to create Audit records to track changes for alarm updates.

6.4 Logging Module (LM)
 Logging module provides methods that can be used to submit log data to a database. Log levels will be

configurable such as debug and error and may result in generating and sending notifications.

6.5 Publishing Module (PM)
This module provides methods for publishing data to external systems and will act as interface between

EDFS and those external systems. Publishing module will consist of sub channels such as JMS channel,

API etc.

6.6 Event Module (EM)
This module provides methods for managing event data within EDFS, such as creating and updating

events, validation and interacting with the Audit and Alarm modules to track changes to an Event.

6.7 Workflow Module (WM)
This module provides functionality to manage event workflow from state to state. Workflow will be

configured by EDFS administrators with each data source having multiple workflows. EDFS will use

default system workflow if a workflow cannot be located for a specific type of event.

17

6.8 User Module (USM)
This module provides methods for authentication/authorization and user management methods such as

creating new users, roles, assigning and revoking privileges.

6.9 Utility Module (UM)
 This module provides various ancillary methods such as date/time conversion, data sanitizing and

formatting, well-formedness checks etc. that can be used across different modules.

6.10 Database Module (DM)
This module acts as a bridge between the database and other modules. It provides basic data access

methods and is designed such that the entire module can be easily modified or replaced if the

underlying database is switched to another provider. For example, Audit module will make use of

methods from database module to save audit logs, with the database module executing the actual SQL

statements that will write those logs to a database.

EDFS consists of subcomponents such as web and the event orchestration engine that provide a runtime

environment for various EDFS methods. The above listed core modules are internally consumed by

these subcomponents to execute various operations. Listed below are the different subcomponents

within EDFS.

6.11 Web Component
This provides all of the user interfaces for EDFS, data and system management. This component consists

of various HTML/JavaScript pages that allow for all the user interactions with EDFS.

6.12 Data Interface (DI)
Events in EDFS can originate from multiple external sources. EDFS exposes a DI to each of these external

data source. A DI is responsible for receiving, parsing, processing, and sanitizing incoming data.

DI internally makes use of Data Processors, explained below, to process and transform data received.

For example, a data interface for CHP CAD may use Geocoder Data Processor to determine geographic

location of an event. The sequence of DPs that a DI will pass messages through will be configurable

using the EDFS system admin interface.

6.13 Data Processor
Data processors are modules that perform various methods such as geocoding and data sanitization.

These modules will be primarily used by Data Interfaces. Additional data processors can be added to

EDFS if a new requirement arises in future.

6.14 Event Orchestration Engine (EOE)
After data has been processed by a Data Interface using various Data Processors it will then be

submitted to the orchestration engine which is where an event starts its lifecycle. EOE is responsible for

managing an event’s lifecycle following a workflow or set of rules configured by administrators. Each

event, based on its source type will have a defined workflow in the system.

18

6.15 Log Processor
This component handles the log persistence requirement for EDFS. Other components will make use of

interfaces exposed by Log Processor to submit error and debug logs during various operational scenarios

within EDFS.

6.16 Audit Processor
 This component handles audit recordings within EDFS. Other components will make use of interfaces

exposed by Audit Processor to submit audit logs during various operational scenarios within EDFS.

6.17 Alarm Processor
This component is responsible for monitoring state of events and generates alarms based on certain

criteria specified in the requirements. The alarms are then displayed to users via the website.

6.18 Archive Processor
This component is responsible for archiving the closed events which are older than number of days

(which can be configurable).

6.19 Publishing Processor
This component provides runtime environment and is responsible for publishing data to various external

channels such as JMS, API, and Twitter etc. Publisher will be utilized by Event Orchestration Engine to

publish an event when it’s in “Published” state.

Note: Since once of the channels is JMS, a Java based client will be used to push to JMS topics and

respond to JMS Queues. Software written using non-Java based JMS clients have limitations in error

handling and do not implement all the specifications per JMS specifications.

19

The following diagram shows different modules and components defined above that together constitute

new EDFS.

Diagram 4: EDFS Architecture

20

The following diagram shows the data flow between components of the system.

21

Diagram 5: EDFS Data Flow

6.20 Data Elements
EDFS is a data management tool which allows collection and manipulation of various data from different

sources. Amongst these, Event is the core data with remaining data types providing additional features

to help manage it. This section list and defines each of these data elements. Many of these elements

will be represented by an individual data object in EDFS.

6.20.1 Event Information

Represents various traffic and transit related events, and incidents within the 511 system. Changes to an

event will create an Event history entry and an Audit record.

Event Type

EventTypeID Type of event (e.g. “Traffic”, “Transit”, “Emergency”, etc.), see

Event Type for possible values.

Event Sub Type

EventSubTypeID Sub Type for the selected Event Type. For “Traffic” would be

“Incident” (which would include Accidents, Fire, Weather, Short-

term Construction, Roadwork etc.), “Construction”, and “Special

Event”. Other event types may have their own sub types defined.

See Event Sub Type for possible values.

Traffic Sub Types

CategoryID For EventType “Traffic”:

 for SubType “Construction”: see ConstructionTypes.csv

 for SubType “Incident”: see IncidentTypes.csv

 for SubType “Special Event”: see SpecialEventTypes.csv

For Special Events

SpecialEventDetails

Event Location

CountyID

Latitude From MDB tblFacility->tblPointLocation by CrossStreetStart

Facility_ID

Longitude From MDB tblFacility->tblPointLocation by CrossStreetStart

Facility_ID

PostMiles Postmile markers indicate the distance a route travels through a

County. ie: “880 ALA 99” is mile 99 in Alameda County on Route

880.

SourceLocationDescription e.g. "JWO"

22

RouteFacilityID

RouteFacilityName

Route/Facility, Bridge and Venues

See MDB tblFacility

Save Facility_ID in tblEvents, Facility_Name in history and archive

Direction

Descriptor (e.g. "before", "after", "at", "between" etc.)

CrossStreetStartPointID

CrossStreetStartPointName

Point_ID From MDB tblFacility->tblPointLocation by Facility_ID

Save Point_ID in tblEvents, Point_Name in history and archive

CrossStreetEndPointID

CrossStreetEndPointName

Point_ID From MDB tblFacility->tblPointLocation by Facility_ID

Save Point_ID in tblEvents, Point_Name in history and archive

Impact

PlayTypeID (list of entries will be provided from existing EDFS)

TravelerAdviceID (list of entries will be provided from existing EDFS)

PavementConditionID Will only apply to incident type events. (list of entries will be

provided from existing EDFS)

WeatherConditionID Will only apply to incident type events. (list of entries will be

provided from existing EDFS)

TravelerImpactID (list of entries will be provided from existing EDFS)

ComputedScore (algorithm will be provided by Bimesh)

Event Background Information

ID Unique identifier of an event within the EDFS system

DataSourceID The Data Source of the event (e.g. "CHP CAD" etc.), see Data Source

Type for possible values

ExternalID Unique identifier provided by external data feed, used to

associated incoming events with an existing event (a.k.a. “Event ID

in Source’s System”)

UserID Owner of the event

OriginalEventDescription Original event description from source

ExpectedDelayTime

ExpectedMilesOfBackup

RelatedEventID Unique identifier of the “parent” event that the event is related to

RelationshipTypeID Type of relationship between an event and its RelatedEvent (e.g.

"Child", Duplicate" etc.), see Event Relationship Type for possible

values

PointOfContact

23

PointOfContactPhone

PointOfContactEmail optional

Notes

Description Will be constructed from UI selections.

DateCreated Date and time when event was created

LastUpdated Date and time when event was updated

StartDate Min(Schedule.StartDate)

EndDate Max(Schedule.End)

Event Schedule

For Long-Term construction and events that span over multiple days EDFS shall allow creating multiple schedules per event.

Operators shall also be able to define Lane Impacts for each schedule entry.

Number, Type, status and lane details of lanes affected(The list of entries will be provided from existing EDFS)

Operators shall also be able to graphically define lane impacts. The underlying link definition should be used to construct

lane diagram. In case where an incident impacts expands multiple exists and multiple links, the lane configuration for first

link should be used. The operators can choose to define impact using list as well as graphical lane representation.

StartDate Scheduled Start Date and Time

EndDate Scheduled End Date and Time

EstimatedDuration Estimated event duration

LeadTime How long before the StartDate should we publish the Event?

LagTime How long after the EndDate should we close the Event?

Continuous (not sure what this means yet)

ActiveDays (All, Mon, Tue, Wed, Thru, Fri, Sat, Sun, Weekday, Weekend)

ImpactLevelID (Major, Minor, Moderate, Severe)

PeakHourDelay (list will be provided from EDFS)

AlternateRouteFacilityID

AlternateRouteFacilityName

Route/Facility, Bridge and Venues

See MDB tblFacility

Save Facility_ID in tblEvents, Facility_Name in history and archive

PeakAlternateRouteDelay

AffectedLaneCount Number of lanes affected by the event

LaneTypeID

LaneStatusID

LaneDetailID

System Information

24

StateTypeID Current state of the event (e.g. “New”, “Published”), see Event

State Type for possible values

PublishingChannels A comma delimited list of Dissemination Channel IDs. For

automatically published events, this list will be all of the channels

available for the data source. For user edited events, this will

contain the selected channels for publication. There will be an

Event Channel Publishing Status record for each entry in this list.

ReadyToPublishTimeStamp Timestamp used to detect UI changes to an event during

publishing. If the timestamp was changed during publishing, the

publishing manager will NOT update the channel publishing statues

after the event has published. The events need to be republished

again.

RequestedActionTypeID Action to be taken against the event by Event Orchestration (e.g.

“Publish”, “Close”), see Action Type for possible values

6.20.1.1 Event Types and Sub Types

Defines basic type of an event, currently defined values are:

Event Type

1 Traffic

Sub Types

1 Construction

2 Emergency

3 General

2 Incident

3 Special Event

2 Transit

6.20.1.2 Categories

Defines classification of a “Traffic” event, currently defined values are:

 SubType “Construction” includes “Bridge Painting”, “Paving”, etc.

 SubType “Incident” includes “Earthquake”, “Fire”, etc.

 SubType “Special Event” includes “Baseball Game”, “Fleet Week”, etc.

25

26

6.20.1.3 Impact Level Type

Defines impact of an event on traffic lanes, currently defined values are:

Impact Level Type

1 Major

2 Minor

3 Moderate

4 Severe

6.20.1.4 Data Source Type

Defines the data source of an event, currently defined values are:

Data Source Type Incoming data feed is

automatically published

(Could be changed as

needed)

1 EDFS User Interface No

2 Caltrans LCS Yes

3 Caltrans CWWP Yes

4 CHP CAD Yes

5 Events Venue Provider RSS/Atom feeds No

6 Twitter No

7 Structured Email Message No

8 Transit Agency Yes

9 Caltrans D-4 ATMS Yes

10 Media No

11 Email No

6.20.1.5 Event Relationship Type

Defines type of relationship between an event and its RelatedEvent, currently defined values are:

Event Relationship Type

1 Child

2 Duplicate

3 Other

27

6.20.1 Event Publishing

Events are selected for publishing based on the Dissemination Channels defined for the event, and the
channel publishing status of each channel. Every schedule events have two records (publish or close) per
schedule per channel. For instance, event ID 123 has three schedules and need to publish for 2 channels.
Total entries in this table will be 2 records (publish and close) * 3 schedules * 2 channels = 12 records.

6.20.1.1 Dissemination Channel Type

Dissemination channels are used by the publisher service to send event information to external systems.

Dissemination Channel Type Requires

1 511 Traffic Website – Breaking News (using Traffic Admin)

2 511 Traffic Website – Construction (using Traffic Admin)

3 511 Traffic Website – Traffic Map

(Congestion and B-A-L using Congestion OI)

Supervisor privilege

4 Floodgates on 511 Phone (using Floodgate manager)

5 Floodgate on MY 511 Phone (using Floodgate manager)

6 511 Traffic Data Feed - TOMS

7 Twitter Account - #twitter1 (example)

8 Ticker

9 511 Transit Website (using Transit CMS)

10 511 Mobile Website

6.20.1.2 Event Channel Publishing Status

Defines the publishing status for each dissemination channel of an event.

Event Publishing Status

EventID Links to an event

ScheduleID Links to a specific event’s schedule

EventPublishStatusType See Event Publish Status Type for possible values

DisseminationChannel See Dissemination Channel Type for possible values

ChannelPublishStatusType See Channel Publish Status Type for possible values

ScheduleDate Date and Time when an event needs to publish or close. The

schedule date value will be the same as schedule’s start date or end

date based on EventPublishStatusType value.

6.20.1.3 Event Publish Status Type

Defines the event’s publishing statues, currently defined values are:

28

Event Publish Status Type

1 Publish

2 Close

6.20.1.4 Channel Publish Status Type

Defines the channels’ publishing statuses, currently defined values are:

Channel Publish Status Type

1 To be published

2 Was published

3 Error

6.20.2 User Information

Represents a user within the EDFS system, typically operators and supervisors. A user will have

privileges on various resources within EDFS. A user will also have list of preferences.

User

ID Unique identifier of a user within the EDFS system

UserName

UserEmail

FirstName

LastName

StatusTypeID The Status of this user (e.g. "Active" etc.), see User Status

Type for possible values

ProfileStatusTypeID The Profile Status of this user (e.g. " NeedToChangePassword

" etc.), see User Profile Status Type for possible values. For

instance, “NeedToChangePassword” flag force the user to

change the password when he/she login.

RoleID The Role that this user is assigned (e.g. “Operator” etc.), see

Role Type for possible values. A user belongs to a single Role

and inherits the privileges assigned to that Role.

FailedPasswordAttemptCount Record the number of failure login attempts. Check this value

against “MaxInvalidPasswordAttempts” configuration value

and lock the user if the value is equal or greater.

FailedPasswordAttemptWindowStart Record the last time login failed. Check this value against

“MaxPasswordAttemptWindow” configuration value at next

29

login and increase “FailedPasswordAttemptCount” value if the

login attempts are within the window.

LastLogin

DateCreated

LastUpdated

6.20.2.1 User Status Type

Defines the status of a user, currently defined values are:

User Status Type

1 Active

2 Disabled

3 Locked

30

6.20.2.2 User Profile Status Type

Defines the profile status of a user, currently defined values are:

User Status Type

1 None

2 NeedToChangePassword

3 NeedToRegister

6.20.2.3 User Challenge Questions

Represents the challenge questions and their answers that would be used when retrieving a user’s

password.

User Challenge Questions

UserID

ChallengeQuestion e.g. “What is your Fathers middle name”

ChallengeAnswer

6.20.2.4 User Session

Represents a user session within EDFS and maintains details such as authentication ticket, date session

was created and last activity time.

User Session

UserID

AuthTicket

ClientIP

CreatedDate

LastActivityTime

6.20.3 User and Role Privileges

Represents privileges assigned to a data source and/or event type, along with the available actions and

dissemination channels.

User and Role Privilege

UserID Required when assigning a privilege to an individual user

RoleID Required when assigning a privilege to a role (instead of an

individual user), see Role Type for possible values

ResourceType See Resource Type for possible values

31

DataSource Required if ResourceType is “Data Source”, see Data Source Type

for possible values

DisseminationChannel Required if ResourceType is “Dissemination Channel”, see

Dissemination Channel Type for possible values

EventType Required if ResourceType is “Event”, see Event Type for possible

values

Privileges Privileges assigned to either a Role or User will contain

combinations of these values (e.g. Read+Publish+Close), see

Privilege Type for possible combinations

6.20.3.1 Resource Type

Resources are objects within EDFS that have Privileges defined on them.

Resource Type

1 Dissemination Channel

2 Data Source

3 Event

4 User

6.20.3.2 Role Type

Defines the role assigned to a user or process, currently defined values are:

Role Type

1 EDFS (assigned to automated processes)

2 Operator

3 Supervisor

4 System Administrator

6.20.3.3 Privilege Type

Represents the privileges available on resources within EDFS. Privileges assigned to either a Role or User

will contain combinations of these values (e.g. Read+Publish+Close).

Privilege Type

0 None

Access privileges

1 Read

32

2 Create

4 Update

8 Delete

Action Privileges

16 Publish

32 Close

64 Discard

128 Archive

Example of privileges assigned to the Supervisor Role

Dissemination Channel Privileges

511 Traffic Website – Breaking News Read+Create+Update

511 Traffic Website – Construction Read+Create+Update

Data Source

CHP CAD Publish+Close+Discard

Event Type

Incident Publish+Close+Discard

User Read+Create+Update+Delete

Example of privileges assigned to an individual user

Dissemination Channel Privileges (would override their Role privileges)

511 Traffic Website – Breaking News Read

Data Source

CHP CAD Publish

6.20.4 Workflow

Represents a workflow defined for data originating from a particular source. Each workflow will consist

of multiple states and transitions.

Example of CHP CAD Workflow

State Stage From State Transition Action To State

Begin New Publish Published

33

 Close Closed

 Discard Discarded

Intermediate Published Update Published

 Close Closed

End Closed Discard Discarded

6.20.4.1 Workflow

Controls the workflow for a data source.

Workflow

ID Unique identifier for a data source workflow

DataSource See Data Source Type for possible values

Active

DateCreated

6.20.4.2 Workflow State

Defines the available “From States” for a workflow.

Workflow State

WorkflowID Workflow that this state belongs to

State See Event State Type for possible values

StateStageType The stage at which this state occurs in a workflow (e.g. “Begin”), see

State Stage Type for possible values

34

6.20.4.3 State Stage Type

Defines the stages of a workflow process, currently defined values are:

State Stage Type

1 Begin

2 Intermediate

3 End

6.20.4.4 Transition

Defines the actions that can be taken against an event in a specific state.

Transition

WorkflowID Workflow that this transition belongs to

Action The action that will transition an event from one state to another

state, see Action Type for possible values

FromState The state that an event must be in to take the action, see Event

State Type for possible values

6.20.4.5 Action

Defines the state that the event will transition into when taking a specific action.

Action

ID Value corresponds to an Action Type

Name

TransitionToState The state that an action will transition an event to, see Event State

Type for possible values

6.20.4.6 Action Type

Defines the available actions that can be taken against an event.

Action Type

1 Publish

2 Close

3 Update

4 Discard

5 Archive

35

6.20.4.7 Event State Type

Defines the possible states of an event.

Event State Type

1 New

2 Published

3 Closed

4 Archived

5 Discarded

36

6.20.5 Alarms

Represents an alarm within the EDFS system. Changes to an alarm will create an Alarm history entry

and an Audit record.

Alarm

EventID Links an alarm to an event

ExternalID Links an alarm to an event by “Event ID in Source’s System”

(optional)

ScheduleID Links an alarm to a specific event’s schedule

UserID The owner of this alarm (optional). If not set, the alarm will be

global.

AlarmType See Alarm Type for possible values

StatusType See Alarm Status Type for possible values

Message

StartDate

IsGlobal Indicates whether alarm is visible to all users

LastUpdated

6.20.5.1 Alarm Type

Defines the types of alarms which can be created.

Alarm Type

1 Error

2 Start Scheduled Event Start

3 End Scheduled Event

4 Orphan Orphan Event

5 Open Open Event

6 General

6.20.5.2 Alarm Status Type

Defines the possible alarm status values.

Alarm Type

0 Inactive

1 Active

37

2 Snoozed

3 Confirmed

4 Pending

6.20.5.3 Alarm Default Values

Allows for configuration of default settings based on the event type and severity/impact.

Alarm Default Values

EventType The event type that this default value applies to, see Event Type for

possible values

EventSubType The event sub-type that this default value applies to, see Event Type

for possible values

LeadTime Number of minutes before event start date/time when this alarm will

become active (e.g. 240 = 4 hours)

For open event, this alarm will become active after event was

published

LagTime Number of minutes before event end date/time when this alarm will

become active (e.g. 240 = 4 hours)

This value is always NULL for unscheduled events

StartMessage Message/Note for scheduled “start” and open event alarms

EndMessage Message/Note for only scheduled “end” alarms

Enable On/Off

Sound Indicate whether the sound alarm or not

SnoozeInterval Number of minutes this alarm is snoozing

LastUpdated

38

6.20.6 Auditing

Represents an audit record within the EDFS system, and contains current and previous values for a

changed field.

6.20.6.1 Audit Record

An audit record is created for each field changed when an alarm or event is updated.

Audit Record

EventID Links an audit record to an event

ExternalID Links an audit record to an event by “Event ID in Source’s System”

(optional)

RecordType Identifies whether an audit record is for an alarm or event, see Audit

Record Type for possible values

HistoryID Links this audit record to either an Alarm history or Event history

record, depending on RecordType

FieldName Name of the field that was changed

FromValue Previous value

ToValue Current value

TimeStamp Date and time when the field was changed (for reporting)

UserID ID of the user who made the changes

6.20.6.2 Audit Record Type

Identifies whether an audit record is for an alarm or event.

Audit Record Type

1 Alarm

2 Event

39

6.20.7 Logging

A log message is created when an error condition occurs and should provide a level of detail required for

debugging the cause of the error.

6.20.7.1 Log Message

Represents a log message within the EDFS system. The LogLevel determine the level of detail to include,

and any follow-up actions required (e.g. sending a notification email). The LogLevel assigned to a

specific Component will be configurable using EDFS system admin interface.

Log Message

UserID Links a log message to a user (optional)

EventID Links a log message to an event (optional)

ExternalID Links a log message to an event by “Event ID in Source’s System”

(optional)

ModuleType Identifies the system module that created this log message, see

Module Type for possible values

LogLevel Identifies the logging level of this message and will contain

combinations of these values (e.g. Message+Notification),see Log

Level Type for possible combinations

Source Identifies the location within the source code where this log message

was generated (for debugging purposes)

Message

StackTrace Detailed information what would help in debugging the cause of an

error. Requires setting the LogLevel to “Stack Trace” in the system

configuration.

TimeStamp Date and time when this message was logged (for reporting)

6.20.7.2 Log Level Type

The LogLevel assigned to a log message will contain combinations of these values (e.g.

Message+Notification).

Log Level Type

0 None

1 Message

2 Stack Trace

3 Notification

40

6.20.8 Configuration

This represents a list of configurable modules and a collection of configuration parameters per module

within the EDFS system.

Below is an example of the configuration for the LogProcessor component having a Logging module.

The component uses its MessageQueueName to listen for LogMessages and configuration change

messages, and the module has a ConnectionString for persisting those messages to the database.

Example configuration for Log Processor Component

ConfigurableObjectID ConfigurableObjectName ParamName ParamValue

1 LogProcessor MessageQueueName “EDFS_Logging”

2 LogModule MessageQueueName “EDFS_Logging”

6.20.8.1 Configurable Object Type

Configurable Object Type

ID Name

1 Component

2 Module

6.20.8.2 Configurable Component Type

Configurable Component Type

ID Name

1 Audit Processor

2 Data Interface

3 Data Processor

4 Event Orchestration

5 Log Processor

6 Publisher

7 Website

8 Archive Processor

9 Alarm Processor

41

6.20.8.3 Configurable Module Type

Configurable Module Type

ID Name

1 Alarm

2 Audit

3 Database

4 Event

5 Logging

6 Publishing

7 Utility

8 Workflow

6.20.8.4 Component Modules

Identifies the Modules used by a Component.

Component Modules

ComponentID Identifies the Component, see Configurable Component Type for

possible values

ModuleID Identifies the Modules used by a Component, see Configurable

Module Type for possible values

6.20.8.5 Configuration Parameter

Contains a single configuration parameter for either a Component or Module used by a Component.

Configuration Parameter

ConfigurableObjectType Either Component or Module

ConfigurableObjectID If object type is Component will link to a Configurable Component

Type, otherwise will link to a Configurable Module Type

Name Name of the parameter (e.g. “LogLevel”)

Value Value of the parameter (e.g. “3”)

42

6.20.8.6 Configuration Change Message

Sent to a components work queue when changing the configuration of the Component or a Module

used by a Component

Configuration Change Message

ConfigurableObjectType Either Component or Module

ConfigurableObjectName Identifies the Component or Module to which this configuration

change applies, used to fine-tune the configuration change process to

limit the impact of a change to only the affected object

TimeStamp Date and time when the configuration was changed

43

6.21 Database Layer
This layer comprises of databases required by EDFS application and includes tables and procedures to

store and manage data used by the various modules in EDFS. Listed below are the different databases

and tables used. Please note, database diagrams have not been provided, as they would be prohibitively

large.

6.21.1 EDFS Database

This database contains tables and procedures for events, users, and workflow.

6.21.1.1 EDFS Database Tables

Below are the tables within the EDFS database.

Table Data Object

Event Information

tblEvents Event

tblEventSchedules Event Schedules

tblEventEdits Tracks the user making an edit to an event and

whether they selected the Publish action

tblEventTypes Event Type

tblEventCategories Event Categories

tblEventSubCategories Event SubCategories

tblDescriptors

tblLaneImpactTypes Lane Impact Type

tblLaneStatusTypes Lane Status Type

tblLaneTypes Lane Type

tblRampTypes Ramp Type

tblShoulderTypes Shoulder Type

tblDataSources Data Source Type

tblEventRelationshipTypes Event Relationship Type

tblDisseminationChannels Dissemination Channel Type

tblDataSourceDisseminationChannels Available channels for each data source

tblEventChannelPublishingStatus Event Channel Publishing Status

tblPublishStatusType Publish Status Type

History

tblAlarmHistory Contains copy of tblAlarms item after each edit

tblEventHistory Contains copy of tblEvents item after each edit

44

tblEventScheduleHistory Contains copy of tblEventSchedules items after each

edit

tblServiceActivationHistory Contains audit trail of windows service activations

Archive

tblAlarmHistory_Archive

tblAlarms_Archive

tblAuditRecords_Archive

tblEventHistory_Archive Archived copy of tblEventHistory

tblEvents_Archive Archived copy of tblEvents

tblEventSchedules_Archive Archived copy of tblEventSchedules

tblEventScheduleHistory_Archive Archived copy of tblEventScheduleHistory

tblLogMessages_Archive

Unhandled Events

tblUnhandledEvents Contains events received from message queue that

could not be processed because of an error condition

tblUnhandledEventSchedules Contains event schedule information received from

message queue that could not be processed because

of an error condition

User Information

tblUsers User

tblUserStatusTypes User Status Type

tblUserChallengeQA User Challenge Questions

tblChallengeQuestions Contains list of challenge questions available to all

users

tblUserSessions User Session

User and Role Privileges

tblResourceTypes Resource Type

tblRoles Role Type

tblPrivilegeTypes Privilege Type

tblUserPrivileges Privileges assigned to a Role

tblRolePrivileges Privileges assigned to an individual User

Workflow

tblActions Action Type

45

tblStates Event State Type

tblStateStageTypes State Stage Type

tblTransitions Transition

tblWorkflows Workflow

tblWorkflowStates Workflow State

Alarms

tblAlarms Alarm

tblAlarmTypes Alarm Type

tblAlarmStatus Alarm Status Type

tblAlarmDefaults Alarm Default Value

Auditing

tblAuditRecords Audit Record

tblAuditRecordTypes Audit Record Types

Logging

tblLogLevels Log Level Type

tblLogMessages Log Message

Configuration

tblConfigurableObjectTypes Configurable Object Type

tblConfigurableComponents Configurable Component Type

tblConfigurableModules Configurable Module Type

tblComponentModules Component Modules

tblConfigParameters Configuration Parameter

6.21 EDFS Modules
This section describes each of the EDFS modules in detail. The design and development of EDFS will

follow a modular/component driven approach. These modules are structured following the “separation

of concern” principle which also allows for a module to be fully designed and implement independent to

other modules.

6.21.1 User Module

User Module provides for all things “User” within EDFS. Other modules will use User Module manage

users, roles and their privileges.

Methods performed by user module are:

 Provide methods to create update and delete users, preferences, groups/roles and privileges.

46

 Provide methods to authenticate and authorize a user.

 Provide methods to manage user session within EDFS.

Two core classes, EDFSMembershipProvider and EDFSRoleProvider provide for all the above major

functionalities. EDFSMembershipProvider inherits from AbstractMembershipShipProvider and

EDFSRoleProvider inherits from AbstractRoleProvider. This layer of abstraction allows for easy extension

and change in future, if such a need arises.

47

Below is a class diagram showing methods and properties available in User Module.

48

The primary consumer of user module is Web Component; different pages within EDFS website will

make use of methods from EDFSMembershipProvider and EDFSRoleProvider.

For example, the login page will call Validate method to authenticate and authorize a user.

User module internally will call Authenticate method from ActiveDirectoryManager which upon

successful validation will return a user identifier such as email back to user module. The User Module

will then make use of Data Module to perform data user lookup and return a User object back to Web

Component.

The various database tables used by Data Module to maintain data related to User Module are listed

under EDFS database tables.

49

The diagram below shows dependencies between User Module and other modules within EDFS.

Diagram 5: User Module Dependencies

50

6.21.1.1 Example of user account validation

The validate user method checks if the user exists in the database. If the user exists, check the user’s

status to determine if it is Active or not. Only the Active can login to the system. This method will lock

the user account after a configurable amount of consecutive password attempts are made within a

configurable amount of time window. The last login date and time will be saved into database if the user

login successfully.

: EDFSMembershipProvider : DataProvider : ActiveDirectoryManager

ValidateUser

GetUser(username)

User

If

ValidateCredentials(username, password)

<<return>>

[User exist in the database]

If [User’s status is Active]

If [Login success]

SaveUser()
Save last login

datetime and reset

failed password

attemp count.

[Else]

SaveUser()
-Increase failed password attempt count.

-Lock user after a configurable amount of

consecutive password attempts are made

within a configurable amount of time window.

51

6.21.2 Utility Module

Utility module consists of classes and method that provide for wide variety of functions and are used

across modules and components. For example, the ActiveDirectoryManager class provides methods

that are used by User Module to perform ActiveDirectoy related methods such as validating a user,

creating new user and roles within EDFS. The utility module does not provide a layer of abstraction as is

the case with other modules. Most of the classes within utility module will be of type Static.

Below is the class diagram for ActiveDirectoryManager, which provides for various methods to interact

with active directory.

52

6.21.3 Log Module

Methods primarily performed by the log module are:

 Asynchronously log error messages to a queue (MSMQ) using the LogLevel of the LogCondition

to determine the level of detail to log, and whether to send an email notification.

 Provide a method to write a queue message to persistent storage, called by the Log Processor

service.

 Provide methods to query persistent storage based on event or date range criteria.

Below is the class diagram showing methods and properties available in the Log Module.

 The AbstractLogger provides a common interface for all error logging within the EDFS system, and the

LogManager provides an implementation of the AbstractLogger to read and write messages to a

message queue and persistent storage.

53

6.21.4 Audit Module

Methods primarily performed by the audit module are:

 Asynchronously log audit records to a queue (MSMQ).

 Provide a method to write a queue message to persistent storage, called by the Audit Processor.

 Provide methods to query persistent storage based on record type criteria.

Below is the class diagram showing methods and properties available in the Audit Module.

The AbstractAuditor provides a common interface for all auditing within the EDFS system and the

AuditManager provides an implementation of the AbstractAuditor to read and write audit records to a

message queue and persistent storage.

54

6.21.5 Alarm Module

Functions primarily performed by the alarm module are:

 Provide methods to create and update the state of an alarm using the DataModule to write to

persistent storage, and AuditModule to track changes.

 Provide methods to query persistent storage based on Event ID criteria.

 Provide methods to query alarm default values based on Event Type and Event SubType.

Below is the class diagram showing methods and properties available in the Alarm Module.

55

6.21.5.1 Processing a configuration change notification

The alarm processor component inherits from AbstractEDFSComponent which provides the stream line

for the configuration change notification.

When the listener receives a change message, it would use cross-thread communication to notify the

main thread to pause after processing the currently running threads which are created by the

component, stop the timer, retrieve the updated configuration parameters, update the configurations,

reset the timer and resume processing.

The following modules and classes are involved in configuration updates:
1. Alarm module,
2. Audit module,
3. Data module and
4. Log module

56

6.21.5.2 Example of alarm component process

: Alarm Component

: Alarm Manager

Create and start the timer

Create

Timer
[For each interval]

Par

ScanUnpublishedEvents ()

: Data Provider

ScanOrphanEvents ()
CreateAlarmForOrphanEvents ()

CreateAlarmForUnpublishedEvents ()

Create alarm for each event

Create alarm for each event

ActivateReadyToActiveAlarms () GetReadyToActiveAlarms()

Activate each alarm

6.21.6 Configuration Module

Functions primarily performed by the configuration module are:

 Store configuration information in the database and provide methods to retrieve and update

individual configuration parameters for each Component and its Modules.

 Apply configuration changes without restarting software or hardware and affecting users logged

in by notifying affected Components and their Modules of a configuration change via the

Components’ message queue.

57

Below is the class diagram showing methods and properties available in the Configuration Module.

58

6.21.6.1 Example of loading configuration parameters for the LogProcessor component

The component constructor receives a DataModule instance pointing to the configuration database, and

uses this to create an instance of the ConfigurationManager which calls

GetComponentConfigurationByName(‘LogProcessor’) returning the following data:

ConfigurableObjectID ConfigurableObjectName ParamName ParamValue

1 LogProcessor MessageQueueName “EDFS_Logging”

2 LogModule ConnectionString “server=localhost;etc..”

The LogProcessor creates an instance of MSMQManager using its MessageQueueName to listen for Log

Messages and configuration change messages.

The LogModule parameters are passed to the constructor for LogModule which creates a DataModule

instance using the connection string for writing to the logging database. This creation pattern applies to

all service components.

6.21.6.2 Processing a configuration change notification

59

For Components, the QueueListener would be a part of the component, running on a secondary thread.
When the listener receives a change message, it would use cross-thread communication to notify the
main thread to pause after processing the current record or batch, retrieve the updated configuration
parameters and resume processing.

For web applications, a QueueListener service would receive the change message and update the
timestamp on the file used for cache dependency, forcing the application to reload and cache the
updated configuration parameters.

6.21.6.3 Example of processing a configuration change notification for the LogProcessor

component

60

6.21.7 Publishing Module

Funstions primarily performed by the publishing module are:

 Provide methods to create and register channels and publish (scheduled and unscheduled)

events to them.

 Provide a method to move to “Publish” state from “New” state for scheduled events which need

to publish right at the moment.

The AbstractChannel provides a common interface for all channels within the EDFS system. Push

method provides common behavior logic for all channels. Drive classes must implement abstract

methods such as Connect, Disconnect, Send, etc.

The AbstractPublishingManager provide a common interface for publishing the events and creating

channels. Publish method provides common behavior logic for publishing events and updating the status

to persistent storage. Drive class must implement abstract methods such as GetReadyToPublishEvents,

CreateChannels, MoveNewStateToPublish, etc.

The PublishingManager provides an implementation of the AbstractPublishingManager to read the

events from persistent storage and use ChannelFactory class to create channels.

The publishing component provides the following functionalities for publishing manager module:

1. Listening to (“EDFS_Publishing”) queue for update configuration changes which is implemented

in AbstractEDFSComponent class.

2. Provide timer to execute the publishing manager’s methods.

Below is the class diagram showing methods, properties and enumerations available in the Publishing

Module.

61

6.21.7.1 Processing a configuration change notification

The publishing processor component inherits from AbstractEDFSComponent which provides the stream

line for the configuration change notification.

When the listener receives a change message, it would use cross-thread communication to notify the

main thread to pause after processing the currently running threads which are created by the

component, stop the timer, retrieve the updated configuration parameters, update the configurations,

reset the timer and resume processing.

The following modules and classes are involved in configuration updates:
5. Alarm module,
6. Audit module,

62

7. Data module,
8. Event module
9. Log module,
10. Publishing module,
11. Queue manager,
12. User module and
13. Workflow module

6.21.7.2 Example of publishing component process

: Publishing Component

: Publishing Manager

Create and start the timer

Create

Timer
[For each interval]

Par

MoveNewStateToPublish ()

Par
[For each channel]

Process ()

: Event Manager

Publish ()

UpdateEventChannelPublishingStatus ()

Process ()

Loop
[For each event]

63

6.21.7.3 Example of publishing the events

: PublishingManager : EventManager : Channel

Publish

Push(event)

If

GetReadyToPublishEvents()

events

Connect()

[Connection Success]

Send()

Disconnect()

<<return>>

UpdatePublishedStatus()

UpdatePublishedStatus()

: ChannelFactory

CreatChannel(channel ID)

Loop [For each dissemination channels]

<<return>>

LoadChannels()

If
[If the event has not published yet for this channel]

Update the status only if the timestamp on event is

same or older than before publishing, else leave the

status as it is. This is done in DB.

Loop
[For each event]

Loop
[For each channel in an event]

64

6.22 Reporting
This section describes each of the EDFS reports in detail.

6.22.1 Event Report

This report includes the Audit report as a sub report.

Fields Columns to pull data from Query

Event ID ID column from tblEvents GetEventReport(fromDate,

toDate, myEventTypeID,

myEventSubTypeID,

myRoadName)

Event Description Description column from

tblEvents

Same

Road Name Name column from tblFacilities

where ID = tblEvents.

RouteFacilityID

same

6.22.2 Event Audit Report

Fields Columns to pull data from Query

Date/Time Change TimeStamp column from

tblAuditRecords

GetEventAuditReport(myEventID)

Username FirstName + LastName columns

from tblUsers where ID =

tblAuditRecords.UserID

Same

Field(s) Changed FiledName column from

tblAuditRecords

Same

Changed From FromValue column from

tblAuditRecords

Same

Changed To ToValue column from

tblAuditRecords

same

6.22.3 Event Activities Reports (per time period)

Fields Columns to pull data from Query

65

Average Event duration Duration column from

tbleventhistory where status =

closed

GetEventActivitiesReports

(fromDate, toDate,

eventTypeID)

Number of Events collected Distinct of tbleventhistory where

status = new

same

Number of Events Modified Distinct of tbleventhistory where

status <> new

same

Number of Events Discarded Distinct of tbleventhistory where

status = discarded

Same

Number of Events Disseminated Distinct of tbleventhistory where

status = published

Same

Number of Event Closed Distinct of tbleventhistory where

status = closed.

same

6.22.4 User Performance Measures Reports (per time period)

Fields Columns to pull data from Query

Number of Published

Events

Total count of ID from

tbleventhistory where status =

published per User

GetUserPerformanceMeasuresReports

(fromDate, toDate, eventTypeID,

eventSubTypeID, userID)

Average Event Handling

Time

Distinct of tbleventedits (TBD)

per User

TBD

Total Number of Events

Modified

Total count of ID from

tbleventhistory where status

<> new per User

Same

Username FirstName + LastName

columns from tblUsers where

ID = tblEventHistory.UserID

same

66

6.22.5 Current Performance and Activities Reports (at current date/time)

Fields Columns to pull data from Query

Number of logged in

users

Total count of

tblUserSessions

GetNumberOfCurrentLoggedInUsersReport

()

Number of Published

Events

Total distinct count of

tbleventhistory where

status = published and

event@current between

StartDate and EndDate

GetNumberOfCurrentPublishedEventsReport

(myEventTypeID, myEventSubTypeID)

6.23 Data Archiving
The data archiving will consists of archiving below list of tables:

 tblEvents, tblEventHistory, tblEventSchedules, tblEventScheduleHistory, tblAlarms,

tblAlarmHistory, tblAuditRecords and tblLogMessages.

The data in the above tables are archived into the following tables:

 tblEvents_Archive, tblEventHistory_Archive, tblEventSchedules_Archive,

tblEventScheduleHistory_Archive, tblAlarms_Archive, tblAlarmHistory_Archive,

tblAuditRecords_Archive and tblLogMessages_Archive.

The schemas of the archive tables are similar to the original tables except that their primary key

columns’ “auto increment” feature is disabled and they have one additional column named

“DateArchived”. All necessary SQL statements and logic for data archiving are inside “ArchiveEvents”

stored procedure. The events which are older than 15 days (which is a configurable) and are closed will

be archived. After data has been successfully archived, the original data will be purged from respective

tables.

This entire functionality is wrapped within ArchieveProcessor component. The archive processor

component inherits from AbstractEDFSComponet.

When the component receives a change message, it will use cross-thread communication to notify the

main thread to pause after processing all the currently executing threads that were created by the

component, stop the timer, retrieve the updated configuration parameters, update the configurations,

reset the timer and resume processing.

The following modules and classes are involved in configuration updates:
1. Alarm module,
2. Audit module,
3. Data module,
4. Event module
5. Log module,

67

6. Queue manager and
7. User module

6.23.1 Example of archive component process

: Archive Component

: Event Manager

Create and start the timer

Create

Timer
[For each interval]

: Data Provider

ArchiveEvents ()
ArchiveData ()

Archive events which are closed

and older than xx days

7 Technology Selection

7.1.1 Software and hardware requirements

The software and hardware requirement for new EDFS consists of:

 Relational Database – To fulfill all data storage needs per section 2.5 of Functional requirement

document.

 Web Server – A server environment to host the EDFS website.

 Processing Server – A server environment that will run all the data interfaces, data processors,

logging, and audit and event orchestration engine.

 Messaging Queue - To allow inter process message transfers between various components

within EDFS.

 Web Framework – A software framework that will provide platform to build EDFS web

application and services.

 Server Side Development Platform – A software programming language and runtime

environment that will facilitate development of server side code.

68

 JavaScript framework - A JavaScript code library that provides inbuilt methods and utilities for

faster and cleaner user interface code development.

 Mapping framework – A combination of server and development framework to create and

consume maps within EDFS.

7.1.2 Key criteria

The key criteria for selecting any particular technology are:

 Prior experience – Was this particular technology successfully used in previous projects?

 Learning Curve – If there is no prior experience with this technology, how extensive is the

learning curve?

 Integration - How well does this particular tool integrate with rest of the system, EDFS and other

511 applications?

 Hosting flexibility – How tightly coupled is this particular tool to hosting provider, in this case,

AWS?

 Scalability Limitations– How well does this technology scale?

 Availability Limitations – Are there any limitations that would hinder developing a highly

available solution?

Below tables lists how these technical requirements are met and justification for selection.

Requirement Selection Prior

experience

Learning

Curve

Integration Hosting

Flexibility

Scalability

Limitation

Availability

Limitation

Notes

69

Relational

Database

MYSQL

(Deployed

as AWS

RDS)

Yes NA Low High None None Keeping in line with MTC’s

future cloud based AWS

hosting environment, MYSQL

RDS has been selected. The

RDS solution offers built-in

replication for high availability

without the additional burden.

This also offers a very low risk

in terms of moving away from

AWS, incase MTC decides so.

The current requirement

doesn’t entail deeper

integration of database with

other components besides

being used as pure storage.

Therefore the low level of

integration is not perceived as

a big risk to the project.

Web Server IIS 7.5

running

on

windows

2008 in

AWS.

Yes NA High High None None The web development

framework will be ASP.NET

4.0, IIS 7.5 and higher is

recommended server

environment by Microsoft.

Other existing MTC websites

are using use IIS 7.5.

Processing

Server

Windows

2008

Server

Yes NA High High None None Since the server side

development framework will

be C#, Windows server is the

most appropriate choice.

Messaging

Queue

MSMQ Yes NA High High None None MSMQ provides a light-weight

asynchronous message

processing framework and

integrates well with Microsoft

.NET.

Web

Framework

ASP.NET

4.0

Yes NA High High None None We have used this in new

traffic website and all new

projects are being developed

using ASP.NET 4.0.

Server Side

Development

Platform

C# 4.0 Yes NA High High None None We have used this in new

traffic website and all new

70

projects are being developed

using C# 4.0.

JavaScript

framework

jQuery Yes NA High High None None We have used this in new

traffic website and many other

projects.

Mapping

framework

ArcGIS 10

and

ArcGIS

JavaScript

Yes NA High High None Non We have used this in new

traffic website. And the

project is based on the

assumption to reuse mapping

capabilities form traffic

website.

71

8 Windows Services
Multiple instances of a windows service such as the LogProcessor may be running at the same time, but

only one will be active. All instances of a service will have a unique name and start in passive mode.

Each instance of the service will have a config file with similar entries:

Each passive instance will ping the service heartbeat at a unique (configurable) interval so that only one

will try to become active eg:

 instance1 will check each minute at the 15 second mark

 instance2 will check each minute at the 30 second mark

When a passive instance detects that the service heartbeat is outdated it will:

 stop heartbeat ping

 update service activation history and heartbeat with its instance name and timestamp

 load component configuration settings from the ConfigDB

 start queue listener (and timer if it’s a timed service)

 start timer to update the heartbeat

The outdate interval = 2 * number of instances * heartbeat interval

An active instance must be restarted to return to passive mode.

72

8.1 Service Installation
Each instance of the service must have its own folder with a copy of the exe, dll and config files eg:

 C:\Services\EDFSCore.LogProcessor\instances\one

 C:\Services\EDFSCore.LogProcessor\instances\two

The SC utility can be used to create, stop and delete the service instances:

8.1.1 Create the service instances

8.1.2 Delete the service instances

73

8.2 Service Monitoring

8.2.1 tblServiceActivationHistory

When an instance of a service becomes active, it updates the service activation history.

ServiceName InstanceName PreviousInstanceName TimeSinceHeartbeat Timestamp

SAIC EDFS

LogProcessor

SAIC EDFS

LogProcessor 1

SAIC EDFS

LogProcessor 2

00:08:59

8.2.2 tblServiceHeartbeats

At every heartbeat interval, the active service updates the heartbeat.

ServiceName InstanceName Timestamp

SAIC EDFS LogProcessor SAIC EDFS LogProcessor 1

74

8.3 Service Testing
The Test.EDFSCore.Interactive project contains a ServiceActivationTest form that can be used to

start/stop and monitor instances of the LogProcessor service. When running in DEBUG mode, the

services will write entries to the System Event log.

A session may look like this:

